Skip to main content

physics

Biot-Savart Law

$$B(r) = \frac{\mu_0}{4\pi} \int \frac{I d\ell \times r'}{|r'|^3}$$

Canonical Partition Function

$$Z = \sum_{i} e^{-\beta E_i}$$

Grand Canonical Partition Function

$$\Xi = \sum_{i} e^{\beta ( \mu N_i - E_i)}$$

Hydraulic Diameter

$$D_h = \frac{4A_c}{P}$$

Reynolds Number

$$Re = \frac{\rho v L}{\mu}$$

Kinematic Viscosity

$$ u = \frac{\mu}{\rho}$$

Snell's Law

$$n_1 \sin(\theta_1) = n_2 \sin(\theta_2)$$

Bernoulli's Principle

$$P + \frac{1}{2} \rho v^2 + \rho g h = \text{const}$$

Hydrostatic Equation

$$\frac{dP}{dz} = - \rho g$$

Specific Gravity

$$SG = \frac{\rho}{\rho_{H_2O}}$$

Specific Weight

$$\gamma = \rho g$$

Viscosity

$$\tau = \mu \frac{\partial u}{\partial y}$$

Coulomb's Law

$$F = \frac{k q_1 q_2}{r^2}$$

Relativistic Addition of Velocities

$$u = \frac{v + u'}{1 + \frac{v \cdot u'}{c^2}}$$

Maxwell's Equations

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0},\ \nabla \cdot \mathbf{B} = 0,...$$

Newton's Law of Cooling

$$\frac{dT}{dt} = -k(T - T_{\text{env}})$$

Boltzmann Entropy

$$S=k_B\ln\Omega$$

Modulus of Resilience

$$U_r = \int_{0}^{\epsilon_Y}\sigma\mathop{d\epsilon} \approx \frac{\sigma_{YS}^2}{2E}$$

Modulus of Rigidity/Shear Modulus

$$G = \frac{\tau}{\gamma}$$

Modulus of Toughness

$$U_t = \int_{0}^{\epsilon_f}\sigma\mathop{d\epsilon}$$

Poisson's Ratio

$$\nu = - \frac{\epsilon_x}{\epsilon_z} = -\frac{\epsilon_y}{\epsilon_z}$$

Resistance in a straight conductor

$$R = \frac{\rho l}{A}$$

Thermal expansion

$$\Delta L = L_0 \alpha \Delta T$$

Light Wavelength and Frequency Relationship

$$c = \lambda f$$

Photon Energy

$$E = hf$$

Schrodinger's Equation

$$\scriptsize i\hbar\frac{\partial}{\partial t}\Psi(x,t) = \left[-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V(x,t)\right]\Psi(x,t)$$

Lorentz Transformations

$$x' = \frac{x-vt}{\sqrt{1-v^2/c^2}}$$

Hooke's Law (Modulus of Elasticity)

$$\frac{F}{A} = E\frac{\Delta L}{L}$$

Hooke's Law (Spring Constant)

$$F = -kx$$

Ampere's Law

$$\oint \vec{B} \cdot d\vec{l} = \mu_0 I$$