↓
Skip to main content
stemformulas
formulas
submit
tags
about
github
linear algebra
Matrix Multiplication
(
a
b
c
d
)
(
w
x
y
z
)
=
(
a
w
+
b
y
a
x
+
b
z
c
w
+
d
y
c
x
+
d
z
)
\scriptsize \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} w & x \\ y & z \end{pmatrix} = \begin{pmatrix} aw + by & ax + bz \\ cw + dy & cx + dz \end{pmatrix}
(
a
c
b
d
)
(
w
y
x
z
)
=
(
a
w
+
b
y
c
w
+
d
y
a
x
+
b
z
c
x
+
d
z
)
Determinants of Matrices
det
(
A
)
\det(A)
det
(
A
)
Vector Projection
p
r
o
j
b
⃗
(
a
⃗
)
=
a
⃗
⋅
b
⃗
∥
b
⃗
∥
2
b
⃗
=
(
a
⃗
⋅
b
^
)
b
^
proj_{\vec{b}}(\vec{a})=\frac{\vec{a}\cdot\vec{b}}{\|\vec{b}\|^2}\vec{b}=(\vec{a}\cdot\hat{b})\hat{b}
p
ro
j
b
(
a
)
=
∥
b
∥
2
a
⋅
b
b
=
(
a
⋅
b
^
)
b
^
Cross Product
a
⃗
×
b
⃗
=
∣
i
⃗
j
⃗
k
⃗
a
1
a
2
a
3
b
1
b
2
b
3
∣
\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}
a
×
b
=
i
a
1
b
1
j
a
2
b
2
k
a
3
b
3
Dot Product
a
⃗
⋅
b
⃗
=
∑
i
=
1
n
a
i
b
i
\vec{a} \cdot \vec{b} = \sum_{i=1}^n a_i b_i
a
⋅
b
=
i
=
1
∑
n
a
i
b
i