Skip to main content

calculus

Finite Difference Approximations

$$\frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

Taylor & Maclaurin Series

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} \cdot (x - a)^n$$

Feynmann's Trick For Exponential Integrals

$$\int_0^{\infty} x^n e^{-tx} dx = \frac{n!}{t^{n+1}}$$

Convolution

$$(f*g)(t)=\int_{-\infty}^{\infty} f(\tau)g(t-\tau)d\tau$$

L'Hopital's Rule

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

Green's Theorem

$$\small \oint_C Pdx + Qdy = \iint_D \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} dA$$

Stokes' Theorem

$$\int_C \vec{F} \cdot d\vec{r} = \iint_S \nabla \times \vec{F} \cdot d\vec{S}$$

Definition of the Derivative

$$\frac{d}{dx}f(x) = \lim_{h\to 0}\frac{f(x+h)-f(x)}{h}$$

Fundamental Theorem of Calculus

$$\int_a^b f(x) dx = F(b) - F(a)$$

Maclaurin Series for exp(x)

$$e^x = \sum_{n=0}^\infty \frac{x^n}{n!}$$