Laplace's Equation
Table of Contents
$$ \nabla^2 f = \nabla \cdot \nabla f = 0 $$
Where
- \(f\) is a twice-differentiable function,
- \(\nabla\) is the gradient operator,
- \(\nabla^2\) is the Laplace operator, and
- \(\nabla \cdot \) is the divergence operator.
In Different Coordinate Systems #
In rectangular coordinates: #
$$ \scriptsize \nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0$$
In cylindrical coordinates: #
$$ \scriptsize \nabla^2 f = \frac{1}{r} \frac{\partial}{\partial r} \left( r \frac{\partial f}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 f}{\partial \phi^2} + \frac{\partial^2 f}{\partial z^2} = 0$$
In spherical coordinates: #
$$ \scriptsize \nabla^2 f = \frac{1}{r^2} \frac{\partial}{\partial r} \left( r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left( \sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta}\frac{\partial^2 f}{\partial \varphi^2} = 0$$
Sources #
- Wikipedia
- Griffith’s Introduction to Electrodynamics’ back cover