Skip to main content

formulas

Click on any formula to visit its page for more details.

Biot-Savart Law

$$B(r) = \frac{\mu_0}{4\pi} \int \frac{I d\ell \times r'}{|r'|^3}$$

Vector Calculus Product Rules

$$\nabla (fg) = f(\nabla g) + g(\nabla f)$$

Canonical Partition Function

$$Z = \sum_{i} e^{-\beta E_i}$$

Grand Canonical Partition Function

$$\Xi = \sum_{i} e^{\beta ( \mu N_i - E_i)}$$

Hydraulic Diameter

$$D_h = \frac{4A_c}{P}$$

Reynolds Number

$$Re = \frac{\rho v L}{\mu}$$

Kinematic Viscosity

$$ u = \frac{\mu}{\rho}$$

Sine Law

$$\frac{\sin(\text{A})}{\text{a}} = \frac{\sin(\text{B})}{\text{b}} = \frac{\sin(\text{C})}{\text{c}}$$

Snell's Law

$$n_1 \sin(\theta_1) = n_2 \sin(\theta_2)$$

Error Function

$$\text{erf}(z) = \frac{2}{\sqrt{\pi}} \int_0^z e^{-t^2} dt$$

Bernoulli's Principle

$$P + \frac{1}{2} \rho v^2 + \rho g h = \text{const}$$

Hydrostatic Equation

$$\frac{dP}{dz} = - \rho g$$

Specific Gravity

$$SG = \frac{\rho}{\rho_{H_2O}}$$

Specific Weight

$$\gamma = \rho g$$

Viscosity

$$\tau = \mu \frac{\partial u}{\partial y}$$

Finite Difference Approximations

$$\frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

Greek Letters

$$\Delta \Omega \lambda$$

Log Laws

$$\log_b(a) = \frac{\log_c(a)}{\log_c(b)}$$

Coulomb's Law

$$F = \frac{k q_1 q_2}{r^2}$$

Capacitance

$$C = \frac{\epsilon A}{d}$$

Capacitor Charge

$$V = \frac{Q}{C}$$

Capacitor Current

$$I = C \frac{dV}{dt}$$

Capacitor Energy

$$E = \frac{1}{2} C V^2$$

Inductor Energy

$$E = \frac{1}{2} L I^2$$

Inductor Voltage

$$V = L \frac{dI}{dt}$$

Relativistic Addition of Velocities

$$u = \frac{v + u'}{1 + \frac{v \cdot u'}{c^2}}$$

Maxwell's Equations

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0},\ \nabla \cdot \mathbf{B} = 0,...$$

Newton's Law of Cooling

$$\frac{dT}{dt} = -k(T - T_{\text{env}})$$

Boltzmann Entropy

$$S=k_B\ln\Omega$$

De Moivre's Theorem

$$\small (\cos x+ i \sin x)^n=\cos(nx)+i\sin(nx)$$